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Abstract

This paper presents the novel approach in efficient calculation of the all or just one
important part of the eigenvalues of the parameter dependent quadratic eigenvalue
problem (λ2(v)M +λ(v)D(v)+K)x(v) = 0, where M,K are positive definite Hermi-
tian n×n matrices and D(v) is n×n Hermitian semidefinite matrix which depends on
a parameter v =

[
v1 . . . vk

]
∈ R

k
+. With the new approach one can efficiently (and

accurate enough) calculate the all (or just part of the) eigenvalues even for the case
when vi are of the modest magnitude. Moreover, for the both cases of approximations
we have derived the corresponding upper bounds. The quality of the error bounds as
well as the performance of the achieved eigenvalue tracking was illustrated in several
numerical experiments.

Keywords: dimension reduction, parameter dependent eigenvalue problem, quadratic
eigenvalue problem, tracking eigenvalues, eigenvalue error bounds.
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1 Introduction

The main topic of this paper is a parameter dependent quadratic eigenvalue problem
(PQEP) of the form

(λ2(v)M + λ(v)D(v) +K)x(v) = 0 , (1.1)

where M,K are positive definite Hermitian n × n matrices and D(v) is n × n Hermitian
semidefinite matrix which depends on a parameter v ∈ R

k
+. Such a problems are connected

with the second-order differential equation

Mẍ(v) +D(v)ẋ(v) +Kx(v) = 0 , (1.2)

where M and K are mass and stiffness, respectively and D(v) is the damping matrix
which can be defined in a several different ways. One of the most common ways is that
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D(v) = Cu+Cext(v), where only the external damping part depends on parameters vi for
i = 1, . . . , k (called viscosities), where v =

[
v1 . . . vk

]
. Moreover, external damping can

be written as Cext(v) = v1C1+ v2C2+ · · ·+ vkCk, where each Ci determines the geometry
of the ith damper and it has a small rank, so that Cext(v) is a semidefinite matrix in
general.

The main issue which we are going to addressed in this paper will be: “how one can
efficiently calculate the eigenvalues λi(v) (for all i = 1, . . . , n, or just one important part
of the spectrum) for the large variety of the parameters v =

[
v1 . . . vk

]
”.

This problem is related with the efficient solving of a various problems connected with
the damped mechanical systems (1.2), such as

1. efficient calculation of approximations of eigenvalues with error bounds for all eigen-
values or the for selected “most important undamped eigenfrequencies”,

2. efficient optimization of the “spectral abscissa”, that is, efficient minimization of the
(penalty) function max

i
Re(λi(v)),

3. the frequency isolation problem, that is re-design of a given damped mechanical
systems (find appropriate v), such that a new system does not have eigenvalues in
some “dangerous interval” typically called the resonance band.

Without minimizing the importance of the omitted titles, below we list a number of
papers related to each of the three above items.

More results connected with the item 1 can be found in [23, 13, 15] where authors
consider approximations of eigenvalues with corresponding error bounds. On the other
hand, there is a large number of papers that consider efficient eigenvalue calculation for
structured eigenvalue problems, such as [1, 10, 16].

On the other hand some of the results on optimization of the “spectral abscissa”, that
is on the item 2, one can find in [6, 5, 9] and among the other, the problems from the item
3 have been investigated in the following papers [12, 17, 11].

This paper is mainly devoted to the problems from the item 1, that is to the problem of
the efficient approximations of the eigenvalues and construction of the corresponding error
bounds for PQEP from (1.1). The similar problem (the problem of efficient calculation
of the eigenvalues λi(v1, . . . , vk)) has been considered in [19]. There authors present two
different approximations, one for the case when 0 ≤ vi ≪ 1 and one for vi ≫ 1, i = 1, . . . , k.

In [24] and later in [19] it has been shown that the behavior of the eigenvalues
λi(v1, . . . , vk) for the 0 < vi ≪ 1 can be appropriately described (or approximated) using
the results (see [24, Chapter 19]) that the spectrum is contained in the union of circles or
Cassini ovals. On the other hand for the case when 1 ≪ vi, i = 1, . . . , k, in [19] the singular
value decomposition of the Cholesky factor of the damping matrix D has been used to
obtain an efficient approximation of the whole spectrum with corresponding Gerschorin
type of bounds.

The main result of this paper will be a certain generalization of the results form [19, 24]
which hold for vi ≪ 1 on the set of parameters of the modest magnitudes. That is we will
present an approach which can be used for the efficient calculation of the whole spectrum
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or just of a part of the spectrum for the problem (1.1) for a different parameters in some
feasible interval, that is 0 ≤ vi ≤ Vi, for i = 1, . . . , k.

The engine that drives the whole process is based mainly on the ideas from papers
[2, 3] by P. Benner, Z. Tomljanović and N. Truhar where authors have considered the
damping optimization based on the minimization of the total average energy.

The efficient calculation of eigenvalues are of our interest, since in the problems similar
to those above listed in items 1-3, one usually has a several parameters which impose a large
number of eigendecompositions calculations. In particular, for fixed number of different
dampers we have to investigate a large number of different position configurations and for
each of them we need to consider viscosities over the feasible time interval 0 ≤ vi ≤ Vi.
As we will illustrate in the preliminaries, even for moderate dimensions we end up with
billions eigenvalue problems that need to be solved.

The paper is organized as follows. In the 2’nd Section we provide preliminary results
that clarifies the problem and notation that we will use in this paper. Mainly we would
like to consider two very important cases for which we derive an efficient approximations
of eigenvectors and eigenvalues and corresponding error bounds. Within the first case,
presented in Section 3, we consider an eigenvalue behavior for a selected undamped eigen-
frequencies. This approximations follow an idea from the paper [2] where authors suggest
a certain types of approximation of the PGEP (2.4), thus the smaller part of the spectrum
is approximated “directly”, and represents the important part for the considered spectra,
while the second part of the spectrum is neglected since is not of our interest. For this
approximation in Section 3.1 we give two error bounds where the first one is based on re-
sults from [15], while the second one is based on Gerschgorin bounds. Within the second
case, presented in Section 4, we study an eigenvalue behavior for all eigenvalues. In this
case we can approximate all eigenvalues using the main approach from the paper [3]. This
means that the approximation of the eigenvalues of the PGEP (2.4) will be obtained by
the block diagonal matrices, where the upper diagonal block contains all important in-
formation which includes the external damping, while the other diagonal blocks contains
two by two matrices similar to the so called modally damped systems. For that part one
can calculate an eigenvalue approximation by a simple formula. The corresponding error
bounds, for this case are given in Section 4.1. In Section 5 we provide two examples with
numerical illustration of performance of our approximation and the quality of the given
bounds.

2 Preliminaries

In this section we will present some preliminaries which will be used in the next two
sections in our approach for the efficient eigenvalue approximations.

Instead of analyzing the PQEP (1.1) we will consider the corresponding linearized
parameter dependent generalized eigenvalue problem (PGEP). For that purpose let Φ be
a matrix that simultaneously diagonalizes M and K, i.e.,

ΦTKΦ = Ω2 = diag(ω2
1 , . . . , ω

2
n) and ΦTMΦ = I. (2.3)
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Then the linearized parameter dependent generalized eigenvalue problem (PGEP) which
corresponds to (1.1) is given by:

A(v)y(v) = λ(v)Jy(v) , (2.4)

where

A(v) =

[
0 Ω
Ω ΦTD(v)Φ

]
, J =

[
I 0
0 −I

]
, (2.5)

and where

y =

[
Ωx
λx

]
.

Since the block ΦTD(v)Φ depends on the structure of the damping we will use the
general form

D(v) = Cu +Cext(v) ,

where in the case of critical damping we have

Cu = αM1/2
√

M−1/2KM−1/2M1/2, (2.6)

and then ΦTCuΦ = αΩ, while in the case of proportional damping Cu = αM+βK it holds
ΦTCuΦ = αI + βΩ2. In the following text we will be focused on internal damping defined
by (2.6), but our results can be easily applied also for other cases of internal damping.

The above linearization has been used in many books and papers, in already mentioned
P. Benner, Z. Tomljanović, N. Truhar papers [2, 3] as well as in [4, 18, 21, 22, 24, 14].

As it has been emphasized in many occasions (in many different papers) the problem of
calculating eigenvalues of parameter dependent generalized eigenvalue problem (PGEP)
(2.4) could be extremely numerically demanding even for the problems of the modest
magnitudes (with large dimensions additional problems arise even within viscosity opti-
mization) due to the combinatorial complexity. For example, let assume that one needs
to calculate the whole (or just a part of the) spectrum of the matrix A(v) ∈ R

2n×2n and
n = 1000, for v =

[
v1 . . . v20

]
, and 0 ≤ vi ≤ 106, i = 1, . . . , 20. Obviously, even for the

case if one needs to calculate 5% of all eigenvalues for various viscosities in set
[
0 106

]20

and various damping positions (in general case
(1000

20

)
different configurations) it will be a

very demanding problem even for the standard algorithms, due to the fact that we need
to calculate eigenvalues for an extremely large number of different settings.

As it has been described in the introduction we will concentrate ourself on two very
important cases. In the first we will consider efficient approximation for the eigenvalues
for selected part of undamped spectrum. Within the second case we will consider efficient
approximation for all eigenvalues. The procedures for approximations and corresponding
error bounds will be given in the next two sections.

4



3 The approximation of the selected eigenvalues

Before we present the main result from this section we will briefly present the results from
[3] which will allow us to efficiently approximate selected eigenvalues of the parameter
dependent generalized eigenvalue problem (PGEP).

Hereinafter, we will assume that the internal damping is a small multiple of the critical
damping, which is not serious constrain, since our approach can be easily extended to the
case where the internal damping is any matrix which is diagonalized by the matrix Φ
defined in (2.3), which is an usual assumption on properties of internal damping.

Thus, let P be the perfect shuffle permutation, then instead PGEP from (2.4) we will
consider permuted one of the form

AP (v)yP (v) = λ(v)JP yP (v) , (3.7)

where AP (v) = P TA(v)P , JP = P TJP and yP = Py.
The given damper positions and corresponding viscosities are included in the matrix

C = ΦTCextΦ, where Φ is given in (2.3).
As we have mentioned in the previous section, our approach is based on dimension

reduction of the parameter dependent generalized eigenvalue problem (PGEP) (3.7). For
that purpose we construct an approximation of the matrix AP (v) by

ÃP (v) =

[
Ã11(v) 0

0 Ã22(v)

]
, A11(v) ∈ R

2r×2r , (3.8)

while the matrix JP from (3.7) will be decomposed as

JP = P TJP = J11 ⊕ J22, , J11 ∈ R
2r×2r , (3.9)

with J given by (2.5). To obtain an appropriate accuracy by this approximation we need
to ensure that the off diagonal parts, are small up to a given tolerance. In order to
achieve this we will need to employ additional permutation that takes the magnitude of
the elements of matrix ΦTCextΦ into account. More details on this we provide in this
section as well as the error for such an eigenvalue approximation.

Thus, instead of the calculating all eigenvalues λi(v), where v =
[
v1 . . . vk

]
of the

PGEP (2.4) for a different parameters vj , j = 1, . . . , k we will calculate the approximations

λ̃i(v), with i = 1, . . . , 2r. These r eigenvalues contains the eigenvalues that have more
influence on our system. More influence here means for example that these eigenfrequencies
have to be damped, or they have to be excluded from a certain interval, or something
similar. Thus, we end up with the two eigenvalue problems

Ã11(v)y11 = λJ11y11 , Ã22(v)y22 = λJ22y22 ,

where yp = [y11, y22] is decomposed respectively with ÃP and the first one contains the
relevant part of the spectrum.

Now we will describe the construction of the matrix ÃP , that is of Ã11, Ã22 in more
details. For this, we will need the additional permutation matrix P̂ which will bring up
the relevant part of the damping matrix C to the upper block diagonal part.

Let the vectors p ∈ N
r and p ∈ N

n−r be chosen such that the following conditions hold:
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i) p ∪ p = {1, 2, . . . , n}.

ii) p is the vector of indices of dimension s, where the first s correspond to the eigen-
frequencies of our interest (for example eigenfrequencies which have to be damped).

iii) p and p are index vectors such that maxij |C(p(i), p(j))| ≤ tol, for a given tolerance
tol.

The vectors p ∈ N
r and p ∈ N

n−r should be chosen such that r is as small as possible
for given parameters s and tol. A strategy for determining p, p will be discussed below.

Now we define a vector w ∈ N
n by w(i) = p(i) for i = 1, . . . , r and w(i) = p(i− r) for

i = r + 1, . . . , n.
The matrix P is the perfect shuffle permutation matrix and P̂ = I(:, w)⊗ I2. Now for

these permutations it holds

ÂP =




0 ωw(1) · · · 0 0

ωw(1) αωw(1) + cw(1)w(1) · · · 0 cw(1)w(n)
...

...
. . .

...
...

0 0 · · · 0 ωw(n)

0 cw(1)w(n) · · · ωw(n) αωw(n) + cw(n)w(n)



, (3.10)

where ÂP = P̂ TP TAPP̂ .
We are interested in the dimension reduction which will allow us to approximate eigen-

values efficiently, thus we define approximation matrix with

ÃP =

[
Ã11 0

0 Ã22

]

where

Ã11 = ÂP (1 : 2r, 1 : 2r) and Ã22 = ÂP (2r + 1 : 2n, 2r + 1 : 2n) (3.11)

for ÂP as given in (3.10).
Since by this approach we reduce dimension from n to r, the parameter r will be called

the reduced dimension.
Note that, more elements of C small by magnitude, means that the reduced dimension

will be smaller. The elements of the matrix C are obtained from the corresponding rows of
the matrix Φ from (2.3). That is, due to the physical properties of the considered systems
it is a very likely that there will be difference in the magnitude of elements in the matrix
ΦTCextΦ (more details can be found in [2, 3, 7]) from which we make direct use in our
approach.

Now we will present Algorithm 1 for the construction of the vectors p and p.
In Algorithm 1, the indices u1, u2, . . . , us, are included in the vector p based on the im-

portant (significant) undamped eigenfrequencies of our interest (for example those which
have to be damped). Usually these indices corresponds to the the certain percentage of
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Algorithm 1 (construction of p and p)

Require: tol;
vi, Ci, i = 1, . . . , k – viscosity and matrix that determines the geometry of the ith
damper;
u1, u2, . . . , us, – s indices of those eigenfrequencies which have to be damped;

Ensure: p, p
1: p = [u1, u2, . . . , us]
2: Determine vector p such that p ∪ p = {1, 2, . . . , n}.
3: T=1
4: C = ΦT (v1C1 + v2C2 + · · ·+ vkCk)Φ
5: while T=1 do

6: Ĉ = C(p, p) and M = maxij |Ĉi,j|.
7: if M > tol then

8: Determine indices i0, j0 such that M = |Ci0,j0 | (ensuring that j0 is not used before
and i0 is index which is element of p).

9: p = [ p, j0 ].
10: Determine the vector p such that p ∪ p = {1, 2, . . . , n}.
11: else

12: T = 0
13: end if

14: end while

the undamped spectra, e.g. the certain percentage of the smallest undamped eigenfre-
quencies or undamped eigenfrequencies within some interval. In order to achieve efficient
approximation we ensure that all elements of the matrix C to be omitted are smaller up
to chosen tolerance that is we have that maxi,j |C(p(i), p(j))| < tol which will have direct
impact in the corresponding error bound.

Once we have obtained the vectors p and p, we can introduce Algorithm 2 for calcu-
lating the eigenvalue approximations.

The following section provides two error bounds for the approximations obtained by
Algorithm 2.

3.1 Error bound for approximation of selected eigenfrequencies

In this section we will present the error bounds for the eigenvalue approximations made
by Algorithm 2. The bounds can be derived using a several different approaches usually
used for error estimation in the eigenvalue approximation. One approach is based on the
standard Gerschorin type of bounds, like in e.g. [8, 20]. The another approach is based
on perturbation bounds from [15].

First we will present a bound based on the bound from Theorem 4.1 from [15]. Just
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Algorithm 2 Approximation of selected eigenfrequencies

Require: α, Φ – such that ΦTKΦ = Ω2 = diag(ω2
1, . . . , ω

2
n) and ΦTMΦ = I;

vi, Ci, i = 1, . . . , k – viscosity and position matrix for the ith damper;
p(1), p(2), . . . , p(s) – indices of the eigenfrequencies which have to be damped;
tol – tolerance needed for Algorithm 1.

Ensure: eigenvalues of (Ap(v), JP )
1: Determine vectors p ∈ N

n−r and p ∈ N
r using Algorithm 1.

2: Ωr = diag(ωp(1), ωp(2), . . . , ωp(k))

3: C = ΦT (v1C1 + v2C2 + · · ·+ vkCk)Φ
4: Calculate all eigenvalues of the pair (Ã11, J11), where

Ã11 =

[
0 Ωr

Ωr αΩr + C(p, p)

]
and J11 given by (3.9).

for the sake of completeness we will rewrite this theorem. Thus, let

ÃP =

( 2r 2n−2r

2r A11

2n−r A22

)
, J̃ =

( 2r 2n−2r

2r J11

2n−2r J22

)
, (3.12a)

ÂP =

(
A11 E12

E21 A22

)
, Ĵ =

(
J11 F12

F21 J22

)
(3.12b)

be non-Hermitian matrices. Since, J̃ is nonsingular this means that ÃP − λJ̃ is diagonal-
izable, so that ÃP − λJ̃ has only finite eigenvalues, and there exist nonsingular matrices
X = diag(X1,X2) and Y = diag(Y1, Y2) such that Y ÃPX = Λ = diag(Λ1,Λ2) and
Y JX = I, where X, Y and Λ are m-by-m and Λ is the diagonal matrix of eigenvalues.

We will establish a bound on |µ− µ̃|, where µ is an eigenvalue of ÂP − λĴ and µ̃ is an
eigenvalue of ÃP − λJ̃ .

Theorem 3.1. Let ÂP , Ĵ , ÃP , J̃ be as in (3.12a) and (3.12b). Suppose that there exist
nonsingular matrices X = diag(X1,X2) and Y = diag(Y1, Y2) such that Y AX = Λ is
diagonal and Y JX = I. If µ̃ is an eigenvalue of ÂP − λĴ such that

ηi
def
= min

µ∈eig(Ãii,J̃ii)
|µ̃− µ| > 0 (3.13)

for i = 1 or 2, then ÃP − λJ̃ has an eigenvalue µ such that

|µ̃− µ| ≤ ‖X‖2‖Y ‖2‖E12 − µ̃F12‖2‖E21 − µ̃F21‖2‖(Aii − µ̃Jii)
−1‖2 (3.14a)

≤
κ2(X)κ2(Y )‖E12 − µ̃F12‖2‖E21 − µ̃F21‖2

ηi
. (3.14b)

Now using Theorem 3.1 we can obtained the error bound for the approximations λi,
i = 1, . . . , r calculated by Algorithm 2.
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Let ÃP be perturbed matrix obtained by Algorithm 2, that is after the perfect shuffle
permutation ÃP can be written as

ÃP =

( 2r 2n−2r

2r Ã11

2n−2r Ã22

)
, J =

( 2r 2n−r

2r J11

2n−2r J22

)
. (3.15)

Further, let X and Y = X−1J be the non singular matrices which diagonalize matrix Ã,
that is Y ÃPX = Λ. Obviously, due to the block structure of ÃP , the matrices X and Y

have the similar block structure, i.e.

X =

( 2r 2n−2r

2r X11

2n−2r X12

)
, Y =

( 2r 2n−2r

2r Y11

2n−2r Y22

)
.

On the other hand, let the unperturbed matrix (the original matrix) be given as

ÂP =

( 2r 2n−2r

2r Ã11 Ã12

2n−2r Ã21 Ã22

)
, (3.16)

then we have the following result.

Corollary 3.1. Let ÃP and ÂP be as in (3.15) and (3.16) ( that is system matrix is given
by Algorithm 2). If λ̃i is an eigenvalue of Ã11, and if

η2(λ̃i)
def
= min

µ∈eig(Ã22,J22)
|λ̃i − µ| > 0 , (3.17)

then ÂP has an (exact) eigenvalue λπ(i) such that

|λ̃i − λπ(i)| ≤ ‖X‖‖Y ‖‖Ã12‖2‖Ã21‖2‖(Ã22 − λ̃iJ22)
−1‖2 (3.18a)

≤ κ2(X)κ2(Y )
‖Ã12‖2‖Ã21‖2

η2(λ̃i)
. (3.18b)

Proof. The proof simple follows from Theorem 3.1.

The application of the bounds (3.18a) and (3.18b) have sense if κ2(X) and κ2(Y ) have
the modest magnitudes and if gap η2(λ̃i) can be calculated efficiently and is not too small.
For the purpose of clarifying this, we will present the following remark.

Remark 3.1. Since, trough this section we are interested in calculation of the approxima-
tion of the part of the spectrum (λ̃i, i = 1, . . . , r), we can assume that X and Y = X−1J

can be written as

X =

( 2r 2n−2r

2r X11

2n−2r I

)
, Y =

( 2r 2n−2r

2r Y11

2n−2r I

)
,
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where Y11 = X−1
11 J11. Then from Corollary 3.1, (that is from (3.18a and 3.18b) it follows

that

|λ̃i − λπ(i)| ≤ ‖X11‖‖Y11‖‖Ã12‖2‖Ã21‖2‖(Ã22 − λ̃iJ22)
−1‖2 (3.19a)

≤ κ2(X11)κ2(Y11)
‖Ã12‖2‖Ã21‖2

η2(λ̃i)
, (3.19b)

where
η2(λ̃i) = min

µ∈eig(Ã22,J22)
|λ̃i − µ| > 0 .

On the other hand, one can notice that in general calculation of the gap, η2(λ̃i) can be
demanding, especially if r ≪ n, that is when Ã22 has “significant” dimension.

If that is a case, the bound (3.19b) or (3.19a) can be applied using the simple estimation
for the η2(λ̃i), based on the approximation of the spectrum of the pair (Ã22, J22), which
can be obtained easily. As we will explain in more details in the next section, one example
of the matrix with the above property is Ã22 of the following form

Ã22 =

n⊕

i=r+1

Ψw(i) + E22, where Ψi =

[
0 ωi

ωi γi + Cii

]

and where ‖E22‖ has a modest magnitude. The spectrum of the pair (Ã22, J22) can be
easily approximated with eigenvalues of the pairs (Ψi,Υi), where

Υi =

[
1 0
0 −1

]
, i = 1, . . . , n− r.

As we have elaborated above the bounds (3.19a) and (3.19b) can be useful if gap η2(λ̃i)
can be efficiently and accurately estimated which in general will not be possible. Thus, in
continuation we would like to present an error bound in the terms of Gershgorin eigenvalue
bounds.

Similarly as the above, we assume that we have determined index vectors p and p

such that maxij |C(p(i), p(j))| ≤ tol for a given tolerance tol. Then, in order to apply

Gerschgorin bound we will multiply the matrix ÂP given by (3.10) from the left-hand side
with J , where J is given by (3.9) (recall that JT = J and J2 = I).

Then, our matrix of interest can be written in the block diagonal form as:

ÂJ
P = JÂP =

[
Ã11 Ã12

Ã21 Ã22

]
,

with

Ã11 = ÂJ
P (1 : 2r, 1 : 2r) and Ã22 = ÂJ

P (2r + 1 : 2n, 2r + 1 : 2n), (3.20)

Ã21 = ÂJ
P (2r + 1 : 2n, 1 : 2r) and Ã12 = ÃT

12. (3.21)

10



Now, in order to apply Gerschgorin bound we will diagonalize block Ã11, and for this
we assume that all eigenvalues from the block Ã11 are simple. In the most cases this will
be the truth, while if is not than we still can obtain the approximations, but without an
efficient error bound. Let X11 be such that

Ã11 = X11Λ11X
−1
11 , (3.22)

where Ã11 is given by (3.20). Here diagonal elements of the matrix Λ11 = diag(λ̃1, . . . , λ̃2r)
provide an approximations of desired eigenvalues given by Algorithm 2 .

Then, using the block diagonal matrix

X̂1 =

[
X11 0
0 I

]

we obtain

X̂−1
1 ÂP X̂1 =

[
Λ11 X−1

11 Ã12

Ã21X11 Ã22

]
.

In order to obtain an error bound that separately provides an error for each eigenvalue
we will apply Gerschgorin theorem (e.g. see [8, 20]). Here we will use a row version of
Gershgorin bound, thus, for each i there exists an index π(i) such that the following bound
holds:

|λ̃i − λπ(i)(ÂP )| ≤

2n−2r∑

j=1

|(X−1
11 Ã12)ij | , (3.23)

for i = 1, . . . , 2r where Ã12 and X11 are given by (3.21) and (3.22), respectively.
Now, once we have the two error bounds, the legitimate question is which of the

bounds, (3.19b) or (3.23) is better? As we will see in the section with numerical examples,
sometimes is better bound (3.19b) and sometimes (3.23), thus the best option would be
to take the minimum of both derived bounds for the given eigenvalue approximation.

4 The approximation of all eigenvalues

Apart from the above mentioned case where we had interest in the important (significant)
part of the spectrum (such as damping or exclusion of the part of the spectrum), in
continuation we would like to consider the eigenvalue behavior of all eigenvalues, that is
behavior of all undamped eigenfrequencies.

Similarly as above we will apply the perfect shuffle permutation matrix P and add
an additional permutation that will allow us to approximate all eigenvalues. In order
to achieve that we need to determine all elements from the matrix C = ΦTCextΦ with
absolute value larger than a given tolerance. Thus, apart from the permutations in the
above section, here we determine the vectors p ∈ N

r and p ∈ N
n−r chosen such that the

following conditions hold:

i) p ∪ p = {1, 2, . . . , n}.
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ii) p and p are index vectors such that maxij |C(p(i), p(j))| ≤ tol for a given tolerance
tol.

iii) p and p are index vectors such that maxij |C(p(i), p(j)) − diag(C(p(i), p(j)))| ≤ tol

for a given tolerance tol.

Here we will also try to obtained vectors p ∈ N
r and p ∈ N

n−r, such that r is as small
as possible, but on the other hand the elements which have to be neglected, will be much
bigger than bound in the previous section, thus usually we will ends with a bigger reduced
dimension r than in the case of approximation of the important (significant) part of the
spectrum.

Moreover, since we have more demands in determination of the first r indices, it is
more likely that the final reduced dimension will be larger than in the previous section.
On the other hand, we will be able to approximate all eigenvalues, so we also expect that
the bigger reduced dimension is needed.

Now, similarly as in the previous section we define a vector w ∈ N
n by w(i) = p(i) for

i = 1, . . . , r and w(i) = p(i − r) for i = r + 1, . . . , n. With this permutation our aim is
to approximate all eigenvalues of the matrix ÂJ

P = JÂP which has the same form as in
(3.10).

In this case we approximate matrix ÂJ
P by the matrix

AP =

[
A11 0

0 A22

]
,

with

A11 = ÂJ
P (1 : 2r, 1 : 2r) , (4.24)

A22 =

n⊕

i=r+1

ΨJ
w(i) , where ΨJ

i =

[
0 ωi

−ωi −γi − Cii

]
. (4.25)

Due to the block structure of our approximated matrix AP , in order to efficiently
determine approximation of all eigenvalues, we need to determine eigenvalues of the matrix
A11 while eigenvalues of the matrix A22 can be calculated by a formula. That is, it holds
that the matrix

ΨJ
i =

[
0 ωi

−ωi −γi − Cii

]
, (4.26)

has eigenvalues

λ̃2i−1 =
−γi − Cii −

√
(γi + Cii)2 − 4ω2

i

2
for i = r + 1, . . . , n, (4.27)

λ̃2i =
−γi − Cii +

√
(γi + Cii)2 − 4ω2

i

2
for i = r + 1, . . . , n, (4.28)
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where Cii =
∑k

i viΦ(:, i)
TCiΦ(:, i) and γi depends on internal damping. For example if

internal damping is a small multiple of the critical damping given in (2.6) then γi = αωi.
All above stated we will summarize in Algorithm 3 which calculates approximation of

all eigenvalues.

Algorithm 3 Approximation of all eigenvalues

Require: α, Φ – such that ΦTKΦ = Ω2 = diag(ω2
1, . . . , ω

2
n) and ΦTMΦ = I;

vi, Ci, i = 1, . . . , k – viscosity and position matrix for the ith damper;
tol – tolerance needed for determination in vector w.

Ensure: eigenvalues of (Ap(v), JP )
1: indices (i, j), i 6= j of elements in C such that |Ci,j | > tol. This determines vectors

p ∈ N
n−r and p ∈ N

r.
2: Ωr = diag(ωp(1), ωp(2), . . . , ωp(k))

3: C = ΦT (v1C1 + v2C2 + · · ·+ vkCk)Φ
4: Calculate all eigenvalues of the pair (Ã11, J11), where

Ã11 = P T

[
0 Ωr

Ωr αΩr + C(p, p)

]
P,

where P is perfect shuffle permutation and J11 is given by (3.9).
5: Calculate other eigenvalues using formulae (4.27)-(4.28).

In the following subsection we will provide an error bound for the approximation given
by Algorithm 3.

We would like to emphasized that in general the new approach (summarized in Al-
gorithm 3) improves the approximation technique which was studied in [19, 24] (derived
specifically for a small viscosity v ≪ 1). More precisely, using Algorithm 3 with tolerance
tol large enough one can obtain approximations of the same quality as in [19, 24]. On the
other hand, the smaller tolerance tol, will result with the reduced dimension (obtain by
Algorithm 3) larger than zero, that is r > 0, which further insures a better approximation
than the one from [19, 24], as we will illustrate in the numerical experiments.

The benefits of the new approximation technique over the approach which has been
derived specifically for a small viscosity v, in [19, 24], will be illustrated in the section
Numerical experiments, especially the Figure 5.2 illustrates eigenvalue behavior obtained
by formulas (4.27 − 4.28) as well as the approximations obtained also by Algorithm 3 for
the tolerance tol large enough.

4.1 Error bound for approximation of all eigenvalues

In this section we will present the error bounds for the eigenvalue approximations made by
Algorithm 3. Here we will present a corresponding error bound in the sense of Gershgorin.
We assume that for the fixed viscosity v we have determined index vectors p and p as in
Algorithm 3.

Now, similarly as in the previous section using (3.10) and J is given by (3.9), our

13



matrix of interest can be written in the block diagonal form as:

ÂJ
P = JÂP =

[
A11 A12

A21 A22

]

where Ã11 is a matrix of dimension 2r × 2r. Now, our approximation corresponds to a
matrix

AP =

[
A11 0
0 ⊕n

i=k+1Ψ
J
w(i)

]

where

ΨJ
i =

[
0 ωi

−ωi −γi − Cii

]
. (4.29)

As in the previous section here similarly assume that all eigenvalues from the matrix
AP are simple.

In order to apply Gerschgorin bound we need to diagonalize all diagonal blocks of
the matrix AP . Thus, first we will diagonalize the block A11, that is, we calculate the
matrix X11 such that A11 = X11diag(λ̃1, . . . , λ̃2r)X

−1
11 where elements λ̃1, . . . , λ̃2r provide

the approximations of our eigenvalues.
Moreover, we need to diagonalize all two by two matrices ΨJ

w(i) for i = r + 1, . . . , n.

For that we assume that (γw(i) + Cw(i)w(i))
2 − 4ωw(i) 6= 0, for i = r + 1, . . . , n, thus there

exists matrices Yr+1,r+1, . . . , Yn,n such that

ΨJ
w(i) = Yiidiag(λ2i−1, λ2i)Y

−1
ii , ∀i = r + 1, . . . , n,

where ΨJ
w(i) and λ2i−1, λ2i are given in (4.26), (4.27),(4.28), respectively.

Then, using block diagonal matrix

X̂ =

[
X11 0

0
⊕n−k

i=1 Yii

]

we obtain

X̂−1AP X̂ =

[
Λ11 X−1

11 A12
⊕n−k

i=1 Yii(⊕n
i=r+1 Yii

)−1
A21X11 AY

]
,

with

AY =

(
n⊕

i=r+1

Yii

)−1

A22

n⊕

i=r+1

Yii (4.30)

Similarly as in the previous section here we will apply Gerschgorin theorem.
For the upper and the lower diagonal block we apply a row version of Gershgorin

bound, thus, for each i ∈ {1, 2, . . . , 2n} there exists permutation π of the set {1, 2, . . . , 2n}
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such that the following bound holds:

|λ̃i − λπ(i)(ÂP )| ≤
2n∑

j=r+1

∣∣∣(X−1
11 Ã12 ⊕

n
l=r+1 Yll)ij

∣∣∣ , i = 1, . . . , 2r,

|λ̃2i−1 − λπ(i)(ÂP )| ≤
2r∑

j=1

∣∣∣∣
((

⊕n
l=r+1Yll

)−1
A21X11

)
2i−2r−1,j

∣∣∣∣

+

n−2r∑

j=1,
j 6=2i−2r−1

|(AY )2i−2r−1,j |, i = r + 1, . . . , n,

|λ̃2i − λπ(i)(ÂP )| ≤

2r∑

j=1

∣∣∣∣
((

⊕n
l=r+1Yll

)−1
A21X11

)
2i−2r,j

∣∣∣∣

+

n−2r∑

j=1
j 6=2i−2r

|(AY )2i−2r,j | , i = r + 1, . . . , n,

where r is number of elements in vector p and AY is given in (4.30).

5 Numerical experiments

In this section we will present two examples. In these examples the corresponding eigen-
value problems have been solved by Matlab’s function eig in double precision.

Example 5.1. In the first example we will consider an n-mass oscillator or oscillator
ladder with two dampers, which describes the mechanical system of n masses and n + 1
springs. Similar models were considered e.g. in [2, 3, 22, 24]. For this mechanical system
the mathematical model is given by (1.1), where the mass and stiffness matrices are

M = diag(m1,m2, . . . ,mn),

K =




k1 + k2 −k2
−k2 k2 + k3 −k3

. . .
. . .

. . .

−kn−1 kn−1 + kn −kn
−kn kn + kn+1




.

The damping matrix is D(v) = Cu + Cext(v), where the internal damping Cu is defined
as in (2.6) with α0 = 0.04 .

Mass and stiffness will be given by the following configuration

n = 1000; ki = 1, ∀i; mi =

{
1200 − 2i, i = 1, . . . , 200,
4i, i = 201, . . . , n.
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We will consider two dampers of different viscosities, that is v =
[
v1, v2

]
, thus the

external damping is defined by Cext = v1eie
T
i + v2eje

T
j , where 1 ≤ i < j ≤ n. We can con-

sider different damping positions, but in order to illustrate benefits of our approximation
technique while we vary viscosities, we will fix damping positions to: i = 600 and j = 900
with viscosities which will vary over the feasible interval.

In this example we would like to consider eigenvalue behaviour for all eigenvalues
which we have considered in Section 4. For the purpose of easier illustration of eigenvalue
behaviour we will consider the following configurations of viscosities:

(v1, v2) = (
v

4
, v), v = 1, 2, . . . , 100. (5.31)

For the tolerance needed in Algorithm 3 we have used tol = 10−5.

Following figures illustrate the quality of the obtained approximation and the eigen-
value behavior while we vary viscosity parameters.

First, on Figure 5.1 we illustrate eigenvalue behavior when parameter v given by con-
figuration (5.31) varies from 1 to 100 with step 1. On this figure the exact eigenvalues
are calculated directly by Matlab and are denoted by red circles. On the other hand the
approximations given by formulas (4.27-4.28) are denoted by black x-es, while the approx-
imation obtained by solving a small eigenvalue problem defined by matrix A11 from (4.24)
are denoted by blue dots. Here we should note that we plot the eigenvalues behavior only
for a small parts of considered eigenvalues, since otherwise it would be hard to follow all
eigenvalues on one figure.

On Figure 5.2 we would like to illustrate the benefits of our approximation technique
over the approach which is derived specifically for a small viscosity v, which was studied
in [19, 24]. On this figure we plot eigenvalues behavior obtained by using only formulas
(4.27 − 4.28) for approximation. The following approximation can be obtained also by
Algorithm 3 by setting the tolerance tol to be large enough.

Figure 5.3 shows the relative errors for the eigenvalues and the upper bounds for the
relative errors for the viscosity v = 10. For this viscosity the reduced dimension for the
above given tolerance was equal to r = 416. On this figure we plot all relative errors larger
than 10−12.

In order to illustrate the magnitude of the reduced dimension while we vary parameter
v as in (5.31), we have shown reduced dimension r on Figure 5.4. Here the reduced
dimension r varies from r = 0 (meaning that we use only formulas (4.27 − 4.28)) to
r = 733 which is 73.3% of the full dimension.

In the previous example we have considered eigenvalue behavior of all eigenvalues.
Thus, in the next example we will illustrate our approach on the case when one is interested
in calculation of a part of the spectrum.

Example 5.2. In this example we consider the mechanical system shown in Figure 5.5
with three rows of d masses which gives 3d+1 masses and 3d+4 springs. Here we consider
three dampers of the same viscosity where each damper is placed on corresponding row
of masses. Each row has springs of the same stiffness equal to k1, k2, k3, respectively. The
last mass (m3d+1) is connected to the fixed base with the spring with stiffness k4. N.T. ne treba only

approximation,

dovoljno je

approximation
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Figure 5.1: Eigenvalue behaviour for Example 5.1

Figure 5.2: Eigenvalue behaviour for Example 5.1 for approximation obtained using only
formulas (4.27 − 4.28)
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Figure 5.3: Relative error for Example 5.1 for v = 10, r = 416.
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Figure 5.4: Reduction dimensions r for Example 5.1 for v = 1, 2, 3, . . . , 100

Figure 5.5: 3d+ 1 mass oscillator
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The mathematical model for the considered vibrational system is given by (1.2) where the
mass matrix is

M = diag(m1,m2, . . . ,mn).

The stiffness matrix is defined as

K =




K11 −κ1
K22 −κ2

K33 −κ3
−κT1 −κT2 −κT3 k1 + k2 + k3 + k4


 ,

where

Kii = ki




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2



, κi =




0
...
0
ki


 , i = 1, 2, 3.

In our example we will consider the following configuration

d = 400, n = 3d+ 1 = 1201,

mk = k, k = 1, . . . , n,

k1 = 1, k2 = 20, k3 = 40, k4 = 50.

Similarly as in the previous example we will fix dampers positions. Since our example has
three dampers with the same viscosity v we have that damping matrix is equal to

D = Cu + Cext, with, Cext = ve350e
T
350 + ve600e

T
600 + ve1000e

T
1000.

where for the sake of easier illustration of obtained results, we set damping positions to
350, 600, 1000 and internal damping is given by (2.6) with α0 = 0.002. In this example, in
Algorithm 2 we use tolerance tol = 10−4.

We will illustrate the quality of eigenvalue approximation given by Algorithm 2 where
we are interested in behavior (in damping) only of the part of the undamped eigenfrequen-
cies larger that 0.1 and smaller than 0.11. For this example this means that we need to
consider eigenvalue behavior of only 49 undamped eigenfrequencies which gives that pa-
rameter s = 49 in Algorithm 2. That is, undamped eigenfrequencies ωi for i = 335, . . . , 383
where ωi from (2.3) are sorted in increasing order and there indices define vector p required
in Algorithm 2.

The Figure 5.6 contains the relative errors and the bounds derived in Section 3.1. In
particular, with red circles we have denoted exact error calculated by Matlab. With blue
dots we show the relative errors for the bound given by (3.23) while the error bound
given by (3.19b) is presented by green triangles. The figure shows the quality of the
derived upper bound for the fixed viscosity v = 2 where Algorithm 1 returned the reduced
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Figure 5.6: Relative error for Example 5.2 for v = 2, r = 60.

dimension is r = 60. Thus, instead of 98 eigenvalues that we would like to track we have
obtained approximations for 120 eigenvalues.

As one can see from Figure 5.6 there exists eigenvalues for which is the bound (3.23)
better, but also exist eigenvalues for which the bound (3.19b) gives better estimation for
the error. In general, this can vary while we change the viscosity v, so the best option
would be to take the minimum of both derived upper bounds.

The eigenvalue behavior is shown at Figure 5.7 where with blue dots we denote ap-
proximations obtained by Algorithm 2, while with red circles we denote exact eigenvalues.
We would like to note that the reduced dimension was varied from r = 60 to r = 131 while
v was varied from 0.05 to 3. Moreover, since we consider damping of undamped eigenfre-
quencies that are larger than 0.1 and smaller than 0.11 on Figure 5.7 we plot eigenvalues
whose imaginary parts lay between 0.1 and 0.11. From this figure, but also from Figure
5.1 we can note that we have achieved satisfactory eigenvalue tracking even for moderate
viscosities v, while we ensure an efficient error bounds for the obtained approximation.

6 Conclusion

In this paper we have shown how one can efficiently calculate the whole spectrum or just
one important part of it, of the parameter dependent quadratic eigenvalue problem , for
the variety of the parameters v =

[
v1 . . . vk

]
, vi ∈ R. Our approach generalize the

results form [19, 24] which hold for vi ≪ 1, on the vi of the modest magnitude. Moreover,
even for the case when vi ≪ 1 our approximations are more accurate then those from
[19, 24]. At the same time, for the both kind of approximations (the all eigenvalues or just
one part of them) we have derived the corresponding upper bounds. The quality of the
error bounds as well as the performance of the achieved eigenvalue tracking was illustrated
in several numerical experiments.
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Figure 5.7: Eigenvalue behaviour for Example 5.2
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